Magnetic and structural properties of GexMn1−x films: Precipitation of intermetallic nanomagnets

نویسندگان

  • S. Ahlers
  • D. Bougeard
  • N. Sircar
  • A. Trampert
چکیده

We present a comprehensive study relating the nanostructure of Ge0.95Mn0.05 films to their magnetic properties. The formation of ferromagnetic nanometer-sized inclusions in a defect-free Ge matrix fabricated by low-temperature molecular beam epitaxy is observed down to substrate temperatures TS as low as 70 °C. A combined transmission electron microscopy and electron energy-loss spectroscopy analysis of the films identifies the inclusions as precipitates of the ferromagnetic compound Mn5Ge3. The volume and amount of these precipitates decrease with decreasing TS. Magnetometry of the films containing precipitates reveals distinct temperature ranges: Between the characteristic ferromagnetic transition temperature of Mn5Ge3 at approximately room temperature and a lower, TS-dependent blocking temperature TB the magnetic properties are dominated by superparamagnetism of the Mn5Ge3 precipitates. Below TB, the magnetic signature of ferromagnetic precipitates with blocked magnetic moments is observed. At the lowest temperatures, the films show features characteristic of a metastable state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cobalt Concentration on Structural and Magnetic Properties of Co-Fe Thin Films

Co-Fe films were electrodeposited on Cu substrate from electrolytes with different Co concentration  levels. X-ray diffraction (XRD) was used  to  investigate  the  films  crystal  structures. The  results  indicate that  if  the  Co  concentration  is  less  that  the  Fe  concentration,  the cubic  structure  appears  in  the  films, while  the  hexagonal  structure dominates when  the C...

متن کامل

HOW THE KONDO EFFECT CAN EXIST IN Gd INTERMETALLIC COMPOUNDS

Based on the crystal and magnetic structural properties of some Gd intermetallic compounds, it is shown that with increasing conduction electron concentration, Gd experiences electronic and magnetic instability, and that these behaviors point to the appearance of Kondo Lattice. We suggest that the conduction electrons have gained local character. It is shown that Kondo effect should be observed...

متن کامل

An Efficient Co-Precipitation Synthesis of BaZr1-xCoxO3 Nanoparticles: Structural, Optical and Magnetic Properties

In this study, BaZr1-xCoxO3 nanoparticles, x = 0.00, 0.04, 0.06, 0.08, 0.10 and 0.20, are synthesized through co-precipitation method. Therefore, structural, optical and magnetic properties have been investigated. The cubic perovskite structure is confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic measurements. The average crystallite size and micro strain ...

متن کامل

Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application

Objective(s): This paper describes synthesizing of magnetic nanocomposite with co-precipitation method.   Materials and Methods: Magnetic ZnxFe3-xO4 nanoparticles with 0-14% zinc doping (x=0, 0.025, 0.05, 0.075, 0.1 and 0.125) were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron...

متن کامل

Effect of Heat Treatment on Structural and Magnetic Properties of Nanocrystalline SrFe12O19 Hexaferrite synthesized by Co-Precipitation Method

Nanocrystalline strontium hexaferrite (SrFe12O19) powders have been successfully synthesized using the facile Co-precipitation method. The ferrite precursors were achieved from mixtures of strontium and ferric chloride in an aqueous medium without any surfactant and soft template. The as-received powders were calcined at 800 and 1000 ˚C for 2 hours in air. The final powders were characterized b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006